Numerical simulation of plain weave composites with defects under unidirectional tension
-
Abstract
Based on the meso-structure of plain weave composites, a micromechanical model was presented to simulate the progressive damage behavior of the plain weave composites that subjected to uniaxial tension. By considering the void defects scattered randomly throughout the matrix that induced during the manufacturing process, the Weibull distribution was implemented to simulate the defects by using Python language in the commercial finite element method (FEM) software ABAQUS standard. The failure criteria proposed by Linde was utilized to set up the progressive damage model, and the stress-strain relation of plain weave composites with defects was simulated. The voids in matrix were chosen for analysis the effect on tensile stress-strain curves of plain weave composite. The micromechanical model allows some detailed interpretation of plain weave composite with defects under warp directional tension, such as the evolution of damage fiber bundle. The numerical results show that the proposed model accurately captures the data from experiments, which demonstrates the validity of the present analytical model. Furthermore, the numerical model provides an alternate way to design and predict the mechanical properties of plain weave composites.
-
-