参数相关性驱动的复合材料加筋板屈曲可靠性及灵敏性分析

Parameter Correlation-Driven Buckling Reliability and Sensitivity Analysis for Composite Stiffened Panels

  • 摘要: 针对复合材料结构可靠性受随机参数相关性影响导致可靠性分析精度降低的问题,提出Copula-Kriging协同可靠度法(CK-SRM),其优势在于通过联合概率建模与代理模型协同优化,定量表征复合材料弹性参数的统计关联机制,突破了传统独立假设与实际物理机制脱节的局限性。首先基于工程算法和屈曲试验数据验证了模型的正确性,其次通过构建Kriging代理模型,结合拉丁超立方抽样与参数化建模获得屈曲载荷,最后建立了参数相关系数-可靠度-承载能力的量化映射关系,结合基于高斯copula抽样的方法分析考虑参数相关性的可靠度及给定可靠度要求下的加筋板承载能力,并开展考虑参数相关性的灵敏性分析。结果表明:相较于基于安全系数法的确定性设计,在10−7的单次飞行失效概率要求下考虑参数相关性时复合材料加筋板的承载能力提高4.7%,对合理设计复合材料加筋板结构、充分发挥材料性能具有一定价值。

     

    Abstract: To address the reduced accuracy in reliability analysis of composite structures due to parameter correlations, this study proposes a Copula-Kriging Synergistic Reliability Method (CK-SRM). By integrating joint probability modeling and surrogate model optimization, CK-SRM quantifies the statistical dependencies of elastic parameters, overcoming the limitations of traditional independent assumptions. The model is validated via buckling tests and engineering computational methods. A Kriging surrogate model is constructed using Latin Hypercube Sampling and parametric finite element modeling to predict buckling loads. A quantitative mapping relationship among parameter correlations, reliability, and load-bearing capacity is established. Gaussian copula-based sampling is employed to analyze reliability and structural capacity under Single Flight Probability of Failure of 10−7. Sensitivity analysis evaluates the impacts of parameter correlations. Results demonstrate that considering parameter correlations improves the load-bearing capacity of composite stiffened panels by 4.7% compared to deterministic design based on the safety factor method. This method provides critical insights for optimizing composite stiffened panel designs, enhancing structural safety, and fully leveraging material performance.

     

/

返回文章
返回