枪弹冲击下UHMWPE层合板背弹面动态响应分析及快速预测方法研究

Dynamic response analysis and rapid prediction method of UHMWPE laminate back surface under bullet impact

  • 摘要: 随着全球安全形势的复杂化,复合材料在高性能个体防护装备中的应用需求持续增长。超高分子量聚乙烯(UHMWPE)以其优异的比强度和能量吸收能力,成为防弹材料的首选。然而,当前对层合板在高速冲击下的动态响应,特别是其在X-Y面内的牵引位移扩展机制与能量耗散特性,研究尚不充分且难以快速预测。这一问题的解决对于优化防护结构设计、提升防护性能至关重要。因此,本文采用了三维数字图像相关(3D-DIC)技术进行实验观测,并结合有限元仿真和数据驱动建模,探索了材料的动态响应特性及其能量耗散规律。首先,测量9 mm弹丸以334.93 m/s冲击UHMWPE层合板后的全场位移,结果显示X-Y方向最大位移约为2 mm,波速分别为517.74 m/s和484.47 m/s,且呈现出时间指数衰减和空间线性衰减特性。然后,采用有限元仿真分析冲击速度、入射角与攻角对鼓包形貌和能量耗散的影响,表明在高速冲击下,能量耗散率可达99%。最后,基于以上分析,构建结合物理约束的多层感知机模型,用于预测高速冲击下的结构响应;该模型在Z向位移预测中的R2值达0.97,显示出极高的精度与计算效率。本研究不仅揭示了UHMWPE层合材料在面内动态响应中的关键机制,还提出了一种兼具物理可靠性与计算效率的快速预测方法。研究成果为防护结构设计优化和高速冲击下的快速评估提供了重要理论支持与工程应用价值,具有广泛的应用前景。

     

    Abstract: With global security challenges grow, the demand for composite materials in high-performance personal protective equipment increases. Ultra-High Molecular Weight Polyethylene (UHMWPE) is the preferred ballistic laminate material due to its excellent specific strength and energy absorption. However, the dynamic response of UHMWPE under high-speed impact, especially its bulging deformation and energy dissipation in the X-Y plane, is not fully understood. Addressing this issue is critical for optimizing protective structure design and improving performance. To better understand the high-speed impact response, this study used three-dimensional digital image correlation (3D-DIC) for experimental observation, combined with finite element simulation and data-driven modeling. Full-field displacement measurements showed a maximum displacement of 2 mm in the X-Y direction, with wave speeds of 517.74 m/s and 484.47 m/s. Finite element simulations revealed that the energy dissipation rate could reach 99% under high-speed impact. A deep learning model incorporating physical constraints was developed to predict structural response, achieving an R2 >0.97 in Z-direction displacement prediction.This research uncovers key mechanisms of laminate in-plane dynamic response and proposes an efficient modeling approach. The findings offer valuable theoretical support and engineering applications for optimizing protective structure design and rapid high-speed impact assessment.

     

/

返回文章
返回