纳米氧化亚铜复合粒子的制备及其性能研究

Preparation and properties of nano-cuprous oxide composite particles

  • 摘要: 针对海洋生物污损防治需求,研究了一种新型环保长效缓释的氧化亚铜-纤维素纳米纤维(Cu2O-CNF)复合防污剂。采用抗坏血酸还原法,探究了表面活性剂、铜源种类等对Cu2O颗粒粒径及形貌的影响。结果表明,添加聚乙烯吡咯烷酮(PVP)并使用五水硫酸铜可制备粒径分布均匀的纳米Cu2O,平均粒径为(43.3 ± 8.5) nm。为抑制纳米Cu2O团聚并提升应用性,进一步通过原位合成法在羧基化纤维素纳米纤维(CNF)表面负载Cu2O,制备了系列Cu2O-CNF复合防污剂。当CNF添加量适中(Cu2O-0.5CNF,质量比10∶1)时,复合粒子相对均匀,平均尺寸显著减小至(38.2 ± 7.7) nm。抗菌性能测试表明,所制备的纳米Cu2O及Cu2O-0.5CNF复合材料对大肠杆菌和金黄色葡萄球菌的抑菌率均超过99%。利用CNF表面羧基(—COOH)与Cu2+的静电作用调控离子释放动力学,复合防污剂初期Cu2+释放量(0.67 mg/L)较纯Cu2O(1.86 mg/L)显著降低。本研究为开发基于纳米Cu2O和生物质载体的高性能、可持续复合防污材料提供了有效策略。

     

    Abstract: To address the need for marine biofouling prevention, this study developed a novel environmentally friendly, long-term-release cuprous oxide-cellulose nanofiber (Cu2O-CNF) composite antifouling agent. Using the ascorbic acid reduction method, this work investigated the effects of surfactant type and copper source type on the particle size and morphology of Cu2O particles. Results indicate that adding polyvinylpyrrolidone (PVP) and using copper sulfate pentahydrate enabled the preparation of uniform nano-Cu2O particles with an average size of (43.3±8.5) nm. To suppress nano-Cu2O agglomeration and enhance applicability, a series of Cu2O-CNF composite antifouling agents were prepared through in-situ synthesis, loading Cu2O onto carboxylated cellulose nanofibers (CNF). When the cellulose nanofiber (CNF) loading was moderate (Cu2O-0.5CNF, mass ratio 10:1), the resulting composite particles exhibited improved uniformity and a markedly reduced average size of (38.2±7.7) nm. Antibacterial performance tests demonstrated that both the prepared nano-Cu2O and Cu2O-0.5CNF composite exhibited over 99% inhibition rates against Escherichia coli and Staphylococcus aureus. Utilizing the electrostatic interaction between carboxyl groups (—COOH) on the CNF surface and Cu2+ ions, the composite antifoulant achieved a significantly lower initial Cu2+ release amount (0.67 mg/L) compared to pure Cu2O (1.86 mg/L), effectively regulating the ion release kinetics. This study provides an effective strategy for developing high-performance and sustainable composite antifouling materials based on nano-Cu2O and biomass carriers.

     

/

返回文章
返回