蚕丝蛋白基高强度水凝胶的制备及其生物应用

Preparation and biological application of high strength hydrogels based on silk fibroin

  • 摘要: 水凝胶具有亲水三维网络结构,因其结构和功能与生物组织相似的特性,使其在生物医学等领域中得以广泛应用。蚕丝蛋白(Silk fibroin,SF)由于其资源丰富,具有良好的生物降解性和生物相容性,成为一种极具潜力的水凝胶基材。然而,由于在蚕丝蛋白制备过程中对蚕丝纤维天然层级结构的溶解和破坏,丧失了蚕丝纤维机械强度高的天然优势,导致力学性能差成为限制蚕丝蛋白基水凝胶广泛应用的主要原因之一,因此,研究者不断寻求策略制备蚕丝蛋白基高强度水凝胶(SF-high strength hydrogels,SF-HSHs)。本文首先介绍了SF的基本结构;然后阐述了SF水凝胶的制备方法和凝胶化机制;进而详细讨论了物理交联、双交联、双网络和复合SF-HSHs;最后简要分析了SF-HSHs的生物应用及其前景与挑战。

     

    Abstract: Hydrogels have hydrophilic three-dimensional network structure, which are widely used in biomedicine and other fields because of its similar structure and function to biological tissue. Silk fibroin (SF) has become one of potential hydrogel substrates due to its abundant resources, good biodegradability and biocompatibility. However, due to the dissolution and destruction of the natural hierarchical structure of silk fibers in the process of preparing silk fibroin, the natural advantage of high mechanical strength of silk fibers is lost, and the poor mechanical properties become one of the main reasons limiting the wide application of silk fibroin-based hydrogels. Therefore, researchers are constantly seeking strategies to prepare silk fibroin-based high strength hydrogels (SF-HSHs). This review first introduced the basic structure of SF. Then the preparation methods and gelation mechanisms of SF hydrogel were described. Furthermore, physical cross-linking, dual cross-linking, dual network and composite SF-HSHs were discussed in detail. Finally, the biological applications, prospects and challenges of SF-HSHs were briefly analyzed.

     

/

返回文章
返回