纳米SiO2@黄麻纤维/PP复合材料多相界面结构与增韧机制

Multi-phase interface structure and toughening mechanism for nano-SiO2@jute fiber/PP composites

  • 摘要: 采用溶胶-凝胶法在黄麻纤维表面获得了纳米SiO2(n-SiO2)沉积层,经过模压工艺,制备了n-SiO2沉积的黄麻纤维/聚丙烯复合材料(n-SiO2@黄麻纤维/PP复合材料)。通过分子动力学(MD)模拟建立了n-SiO2@黄麻纤维/PP复合材料多相界面的分子模型,结合复合材料冲击性能与断口形貌的分析,揭示了此类混杂型复合材料的多相界面结构与增韧机制。黄麻纤维经过n-SiO2沉积处理,其增强PP复合材料的冲击韧性提高了54.87%。n-SiO2沉积层通过与黄麻纤维之间的C—O—Si化学键作用及其与PP基体分子链之间的机械锁结作用,在黄麻纤维与PP基体之间形成了界面相,使得黄麻纤维/PP复合材料的界面结合能提高了27.22%。当复合材料发生冲击破坏时,n-SiO2界面相将引发“银纹效应”,使得裂纹的传播方向发生倾斜或扭转,延长了裂纹的扩展路径,消耗了裂纹传播的能量,减缓了裂纹的扩展速度。此外,在冲击失效过程中,结合性能良好的多相界面不仅能够诱导PP基体产生塑性变形,吸收大量的冲击能量,而且可将部分冲击能量传递至黄麻纤维内部,使得微纤之间发生界面脱黏。由于黄麻纤维/PP基体界面结合强度小于黄麻纤维内部微纤之间的界面结合强度,因此微纤之间的界面脱黏将会消耗更多的冲击能量。

     

    Abstract: Nano-SiO2 layer was obtained on the jute fibers by sol-gel method, and nano-SiO2 deposited jute fiber/polypropylene composites (n-SiO2@jute fiber/PP composites) were prepared by molding process. The molecular model of the multi-phase interfaces for n-SiO2@jute fiber/PP composites was established by molecular dynamic (MD) simulation. Combined with the analyses of the impact performance and fracture morphologies for n-SiO2@jute fiber/PP composites, the multi-phase interface structure and toughening mechanism of the compo-sites were revealed. The impact toughness of n-SiO2@jute fiber/PP composites is increased by 54.87% than that of the control ones. n-SiO2 layer forms an interphase between jute fiber and PP by C—O—Si chemical bond and the mechanical interlocking of molecular chains, which enhances the interface binding energy of jute fiber/PP compo-sites by 27.22%. When the impact fracture of the composites occurs, n-SiO2 interphase causes the crack deflection at the interface, which will absorb more fracture energy by increasing the crack propagation path and decreasing the crack propagation velocity. Additionally, the multi-phase interfaces with good bonding performance make the PP surrounding n-SiO2 interphase undergo plastic deformation during the impact failure process, absorbing massive impact energy. Moreover, the multi-phase interfaces transfer the part of impact energy from PP to jute fibers effec-tively, causing the internal debonding of the jute fibers and thus consuming more impact energy. This is because the interface bonding strength between the fibrils in the jute fibers is stronger than that between the jute fibers and PP.

     

/

返回文章
返回