CO2开关型表面活性剂聚酯烯基磺酸钠的合成及其乳化性能

Synthesis and emulsifying performance of polyester sodium olefin sulfonate polymer as a CO2-switchable surfactant

  • 摘要: 高分子表面活性剂被广泛应用于科学研究及食品、农业、纺织等工业领域。为了减少在大多数实际应用过程结束后失去活性的高分子因残留引起的副作用,设计并开发新型的开关型高分子表面活性剂具有重要的意义和应用价值。为此,通过自由基聚合法制备了一种CO2开关型高分子表面活性剂聚(甲基丙烯酸二乙氨基乙酯-乙烯基磺酸钠)(P(DEAEMA-SVS))。采用1H-NMR谱和GPC谱研究聚合物的结构与分子量分布。通过表面张力和界面张力的变化研究P(DEAEMA-SVS)乳液的稳定性。当甲基丙烯酸二乙氨基乙酯(DEAEMA)/乙烯基磺酸钠(SVS)单体投料比为1∶1(摩尔比)时,形成的聚合物粒子粒径约为113 nm,粒径分布窄,可将水的表面张力降低至37.279 mN/m,将水/液体石蜡的界面张力降低至5.492 mN/m,是一种有效的CO2开关型表面活性剂,可作为唯一乳化剂稳定乳液。P(DEAEMA-SVS)的水/液体石蜡乳液具有很好的CO2开关性能,在通入CO2 30 min后可破乳,在60℃下通入N2又可再乳化,且可多次循环。P(DEAEMA-SVS)表面活性剂水溶液可与液体石蜡形成水包油型乳液。乳化机制研究表明,P(DEAEMA-SVS)因侧链上的叔胺基团的疏水性,在CO2的作用下发生质子化作用形成亲水的季铵盐,使乳液油水两相分离而破乳;60℃温度下通入N2可去除CO2,使聚合物侧链上的叔胺基团去质子化疏水吸附在油水界面上再次稳定乳液。

     

    Abstract: Polymer surfactants are widely used in scientific research and industrial fields such as food, agriculture and spanning. In order to reduce the side effect caused by the residual of the inactive polymer after most of the practical application process, designing and developing switchable polymer surfactants is of great significance and application value. A CO2-switchable surfactant Poly(N, N-Diethylaminoethyl methacrylate-sodium vinylsulfonate) (P(DEAEMA-SVS)) has been synthesized by free radical polymerization. The structure and molecular weight distribution of P(DEAEMA-SVS) were characterized by 1H-NMR and GPC spectra. The stability of P(DEAEMA-SVS) emulsion was studied by the surface tension and interfacial tension. The polymer P(DEAEMA-SVS) with the size of about 113 nm and the narrow particle size distribution form via N, N-Diethylaminoethyl methacrylate (DEAEMA) and sodium vinylsulfonate (SVS) of 1∶1 mole ratio as reaction monomers, which decrease the surface tension of water to 37.279 mN/m and the interfacial tension of water/paraffin wax to 5.492 mN/m. It is indicated that P(DEAEMA-SVS) polymer is an effective CO2-switchable O/W surfactant to stabilize emulsion as a only emulsifier. The surface activity and CO2 response of the polymer were evaluated by mixing the aqueous solution (1wt%) with paraffin wax. Bubbling CO2 for 30 min to the milky emulsion, it turns into clear and bubbling N2 for 30 min at 60℃, and converts to its original state, showing excellent cyclic performance of de-emulsification and re-emulsification process. The research results of emulsification mechanism show that the side-electron mobility and photogenerated electron-hole pairs separation. Chained tertiary amino groups of P(DEAEMA-SVS) polymer protonize and turn into hydrophilic quatemary ammonium salt to destroy the oil/water balance of the emulsion with bubbling CO2, while quatemary ammonium salt deprotonizes and returns into hydrophobic tertiary aminogroups with bubbling N2 at 60℃.

     

/

返回文章
返回